<table>
<thead>
<tr>
<th>SHELL SIZE</th>
<th>A MAX</th>
<th>B BSC</th>
<th>C MAX</th>
<th>D MAX</th>
<th>E MAX</th>
<th>F RECEPT ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>.785</td>
<td>.565</td>
<td>.400</td>
<td>.308</td>
<td>.270</td>
<td>.239</td>
</tr>
<tr>
<td>15</td>
<td>.935</td>
<td>.715</td>
<td>.550</td>
<td>.308</td>
<td>.270</td>
<td>.239</td>
</tr>
<tr>
<td>21</td>
<td>1.085</td>
<td>.865</td>
<td>.700</td>
<td>.308</td>
<td>.270</td>
<td>.239</td>
</tr>
<tr>
<td>25</td>
<td>1.185</td>
<td>.965</td>
<td>.800</td>
<td>.308</td>
<td>.270</td>
<td>.239</td>
</tr>
<tr>
<td>31</td>
<td>1.335</td>
<td>1.115</td>
<td>.950</td>
<td>.308</td>
<td>.270</td>
<td>.239</td>
</tr>
<tr>
<td>37</td>
<td>1.485</td>
<td>1.265</td>
<td>1.100</td>
<td>.308</td>
<td>.270</td>
<td>.239</td>
</tr>
<tr>
<td>51</td>
<td>1.435</td>
<td>1.215</td>
<td>1.050</td>
<td>.351</td>
<td>.310</td>
<td>.281</td>
</tr>
<tr>
<td>69</td>
<td>1.737</td>
<td>1.515</td>
<td>1.350</td>
<td>.351</td>
<td>.310</td>
<td>.281</td>
</tr>
<tr>
<td>100</td>
<td>2.170</td>
<td>1.800</td>
<td>1.442</td>
<td>.394</td>
<td>.360</td>
<td>.394</td>
</tr>
</tbody>
</table>
3. SPECIFICATIONS (SIGNAL CONTACTS):
 CURRENT RATING ------------------ 3 AMPS MAX
 TEMPERATURE RATING ----------- -55° C TO +125° C
 INSULATION RESISTANCE -------- 5000 MEGOHMS MIN
 DWV AT SEA LEVEL ---------------- 600 VAC
 DWV AT 70,000 FT ALTITUDE --- 150 VAC
 SOLID COPPER (+0.20 / - 0.00)
 1 = 0.5 INCH
 2 = 1.0 INCH
 3 = 0.25 INCH
 4 = 0.125 INCH

4. ADDITIONAL INFORMATION:
 DESIGN AND PERFORMANCE IN GENERAL
 ACCORDANCE WITH M83513 WHERE APPLICABLE.
 FOR OTHER TERMINATIONS, CONTACT CRISTEK.

1. MATERIALS:
 SHELL - ALUMINUM ALLOY OR STAINLESS STEEL
 INSULATOR - GLASS FILLED THERMOPLASTIC
 PIN/SOCKET CONTACT - COPPER ALLOY

2. FINISH:
 SHELL - SEE OPTIONS ABOVE
 PIN/SOCKET CONTACT - GOLD OVER NICKEL

MICRO-D MATERIALS AND FINISHES ARE IAW MIL-DTL-83513 WHERE APPLICABLE
FOR DETAILS SEE MIL SPEC OR WWW.CRISTEK.COM

1. MATERIALS:
 SHELL - STAINLESS STEEL PER ASTM A484 TYPE 303
 INSULATOR - MIL-STD-19509/11 *
 PIN/SOCKET CONTACT - CUPPER ALLOY

2. FINISH:
 SHELL - PASSIVATION (STAINLESS STEEL)
 PIN/SOCKET CONTACT - GOLD OVER NICKEL

MICROWAVE MATERIALS AND FINISHES

1. MATERIALS:
 CONTACT - STAINLESS STEEL PER ASTM A484 TYPE 303
 INSULATOR - MIL-STD-19509/11 *
 PIN/SOCKET CONTACT - COPPER ALLOY

2. FINISH:
 GOLD PER MIL-G-45024, TYPE II, GRADE C, CLASS I
 (.000050/.000100 THICK) OVER NICKEL PLATING PER
 SAE-AMS-QQ-Q-290, CLASS 1.25 (.000050/.00010 THICK)

3. ELECTRICAL REQUIREMENTS:
 NOMINAL IMPEDANCE ------- 50 OHMS
 FREQUENCY RANGE ----------- 26.5 GHz
 VOLTAGE RATING ------------ 325 VRMS MAX
 VSWR --------------------- 1.05 + .008 X FGHz
 INSERTION LOSS ------------- 0.07 X SQRT FGHz
 DWV ---------------------- 500 VRMS MAX
 INSULATION RESISTANCE ------ 1000 MEGOHMS

4. MECHANICAL:
 CONNECTOR DURABILITY ----- 500 CYCLES

5. ENVIRONMENTAL
 TEMPERATURE RATING: -65°C TO +125°C
 VIBRATION: MIL-STD-202, METHOD 204, COND D (20G)
 SHOCK: MIL-STD-202, METHOD 213, COND C (100G)
 CORROSION: MIL-STD-202, METHOD 101, COND B (8% SALT)
 RANDOM VIBRATION: MIL-STD-202, METHOD 214, COND B (15 MIN/AXIS)
 THERMAL SHOCK: MIL-STD-202, METHOD 107, COND B (+165° Hi TEMP)

TOLERANCE: .005 ±.000 .XX ±.01 ANGLE ±1°

MICRO-D METAL SHELL HYBRID COAX

WIRE SIZE (FOR LOW FREQ LINES)
 STRANDED WIRE
 0 = 26 AWG
 1 = 24 AWG
 2 = 28 AWG
 SOLID WIRE
 0 = 25 AWG
 1 = 24 AWG

WIRE COLOR/TYPE (FOR LOW FREQ LINES)
 0 = WHITE STRANDED
 1 = YELLOW STRANDED
 2 = 10 SOLID COLORS REPEATED
 3 = FULL COLOR CODE STRANDED
 9 = SOLID COPPER

CABLE TYPE (FOR RF LINES)
 01 = RD316 (M17/152-00001)
 02 = D-FLEX 105 (DACHSHUND)
 03 = L-FLEX 120 (LABRADOR)
 04 = S-FLEX 110 (GERMAN SHEPARD)
 05 = D-FLEX (DACHSHUND)

TERMINATION (FOR LOW FREQ LINES)
 0000 - SOLDER CUP *
 0001 - EDGE CARD LEADS (25 AWG)
 N000 - NO LOW FREQUENCY LINES
 WIRE TYPE
 STRANDED
 H = HARNESS (MIL-W-16878/4)
 SOLID
 G = GOLD PLATED COPPER
 T = TIN/LEAD PLATED COPPER

FOR OTHER OPTIONS CONTACT CRISTEK

REV C

CRISTEK.COM 888.265.9162
CABLE ATTENUATION (Db/100ft) VS. FREQUENCY

<table>
<thead>
<tr>
<th>FREQ. (GHz)</th>
<th>L-Flex 120</th>
<th>D-Flex 105</th>
<th>S-Flex 110</th>
<th>D-Flex 060</th>
<th>RD316</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>11.6</td>
<td>14.6</td>
<td>16.4</td>
<td>27.8</td>
<td>26.0</td>
</tr>
<tr>
<td>1</td>
<td>16.6</td>
<td>21.1</td>
<td>23.6</td>
<td>39.6</td>
<td>40.0</td>
</tr>
<tr>
<td>2</td>
<td>23.8</td>
<td>30.5</td>
<td>34.1</td>
<td>56.8</td>
<td>60.2</td>
</tr>
<tr>
<td>3</td>
<td>29.5</td>
<td>38.0</td>
<td>42.4</td>
<td>70.3</td>
<td>75.3</td>
</tr>
<tr>
<td>4</td>
<td>34.4</td>
<td>44.5</td>
<td>49.6</td>
<td>81.8</td>
<td>88.9</td>
</tr>
<tr>
<td>5</td>
<td>38.8</td>
<td>50.4</td>
<td>56.1</td>
<td>92.1</td>
<td>102.7</td>
</tr>
<tr>
<td>6</td>
<td>42.8</td>
<td>55.9</td>
<td>62.0</td>
<td>101.6</td>
<td>116.9</td>
</tr>
<tr>
<td>7</td>
<td>46.6</td>
<td>61.0</td>
<td>67.6</td>
<td>110.4</td>
<td>130.7</td>
</tr>
<tr>
<td>8</td>
<td>50.1</td>
<td>65.8</td>
<td>72.9</td>
<td>118.6</td>
<td>144.1</td>
</tr>
<tr>
<td>9</td>
<td>53.5</td>
<td>70.4</td>
<td>78.0</td>
<td>126.5</td>
<td>157.2</td>
</tr>
<tr>
<td>10</td>
<td>56.7</td>
<td>74.9</td>
<td>82.8</td>
<td>134.0</td>
<td>170.0</td>
</tr>
<tr>
<td>11</td>
<td>59.8</td>
<td>79.1</td>
<td>87.5</td>
<td>141.2</td>
<td>182.6</td>
</tr>
<tr>
<td>12</td>
<td>62.7</td>
<td>83.3</td>
<td>92.0</td>
<td>148.1</td>
<td>195.1</td>
</tr>
<tr>
<td>13</td>
<td>65.6</td>
<td>87.3</td>
<td>96.3</td>
<td>154.8</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>68.4</td>
<td>91.2</td>
<td>100.6</td>
<td>161.3</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>71.1</td>
<td>95.0</td>
<td>104.7</td>
<td>167.6</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>73.8</td>
<td>98.8</td>
<td>108.8</td>
<td>173.7</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>76.3</td>
<td>102.4</td>
<td>112.7</td>
<td>179.7</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>78.9</td>
<td>106.0</td>
<td>116.6</td>
<td>185.5</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>81.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>20</td>
<td>83.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>21</td>
<td>86.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>22</td>
<td>88.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>23</td>
<td>90.8</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>24</td>
<td>93.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>25</td>
<td>95.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>26</td>
<td>97.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Attenuation vs. Frequency

![Graph showing attenuation vs. frequency for different cable types.](image-url)